有理数加法的教案
有理数加法的教案(推荐15篇)。
作为一位不辞辛劳的人民教师,通常会被要求编写教案,教案是教学活动的依据,有着重要的地位。那要怎么写好教案呢?以下是小编为大家收集的有理数的加法教案范文,仅供参考,欢迎大家阅读。
有理数加法的教案 篇1
【教学目标】
1.理解有理数加法的实际意义;
2.会作简单的加法计算;
3.感受到原来用减法算的问题现在也可以用加法算.
【对话探索设计】
〖探索1〗
(1)某仓库第一天运进300吨化肥,第二天又运进200吨化肥,两天一共运进多少吨?
(2)某仓库第一天运进300吨化肥,第二天运出200吨化肥,两天总的结果一共运进多少吨?
(3)某仓库第一天运进300吨化肥,第二天又运进-200吨化肥,两天一共运进多少吨?
(4)把第(3)题的算式列为300+(-200),有道理吗?
(5)某仓库第一天运进a吨化肥,第二天又运进b吨化肥,两天一共运进多少吨?
〖探索2〗
如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么?
假设原点为运动起点,用下面的数轴检验你的答案.
在足球比赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.若某场比赛红队胜黄队5:2(即红队进5个球,失2个球),红队净胜几个球?
〖小游戏〗
(请一位同学到黑板前)前进5步,又前进-3步,那么两次运动后总的结果是什么?若是后退-1步,又后退3步呢?
〖练习〗
1.登山队员第一天向上攀登,第二天又向上攀登(天气恶劣!),两天一共向上攀登多少米?(799918.Com 好句摘抄网)
2.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?
〖补充作业〗
1.分别用加法和减法的算式表示下面每小题的结果(能求出得数最好):
(1)温度由下降;(2)仓库原有化肥200t,又运进-120t;
(3)标准重量是,超过标准重量;(4)第一天盈利-300元,第二天盈利100元.
2.借助数轴用加法计算:
(1)前进,又前进,那么两次运动后总的结果是什么?
(2)上午8时的气温是,下午5时的气温比上午8时下降,下午5时的气温是多少?
3.某潜水员先潜入水下,他的位置记为.然后又上升,这时他处在什么位置?
有理数加法的教案 篇2
一、教学内容分析
本节课是有理数加法的法则推导和计算,在此基础上,学生已经学过了正数和负数的认识及实际表示的意义和有理数的大小比较。本节课将在此基础上授导学生学习有理数的加法法则,解决同号、异号两数相加的计算。
二、学习者分析
七年级的学生,其思维已经明显地具备了逻辑思维性,并且学生已经在我的要求下,学会了预习、初步养成了预习的习惯,逐渐养成了合作交流的习惯。只要我们教师通过具体的问题的指引、学生小组间的合作和交流,是可以完成本节课的教学目标的。
三、教学目标
1、使学生掌握有理数加法法则,并能运用法则进行计算;
2、让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;
3、让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。
四、信息技术应用分析
由于本节课的知识点是探究有理数加法法则,要求学生掌握并会运用,所以为了节省时间和极大的提高学生的学习兴趣,选用了多媒体进行教学,把所有的内容用电子的白板展示出来。
五、教学过程
1、复习提问,引入新知
通过对小学加法及数轴知识的应用的复习,让学生既巩固了原来所学的知识,又可以引出新课。
2、出示问题情境、解决新知
在解决新知的过程中,由于学生利用已有的知识及题目提示,运用学生互相合作交流,并且由各个小组进行展示答案。
3、探索发现,归纳新知
利用学生展示的答案,学生分组进行归纳总结,得出有理数运算法则。
学生通过合作交流,养成在日常生活中和别人交流合作的好习惯。,通过展示成果培养了学生的自信心。
4、展示例题、应用新知
此环节巩固了所学知识,并且通过本环节让学生体会小组合作的乐趣,体会利用法则解决实际问题的方法。
5、达标训练,巩固新知
本环节进一步巩固了所学的知识,在互动回答是采用哪个小组举手多、举得早,让哪个小组来回答;让学生养成一种竞争意识,合作交流意识。
6、规律总结,升华新知
本环节着重总结有关有理数加法法则,让学生进行小结,逐步养成学生在解决问题时随时总结规律的习惯,并对本节课的知识进行梳理、加深和巩固。
7、作业和运用,拓展新知
通过作业学生进一步巩固所学知识,强化对知识的理解和应用,通过挑战自我来拓展学生知识面,发展学生的认识。
有理数加法的教案 篇3
教学目标
1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数。
2、能力目标:能应用正负数表示生活中具有相反意义的量。
3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系。
教学重难点
重点:
理解有理数的意义.
难点:
能用正负数表示生活中具有相反意义的量。
教学过程
一、创设情境、提出问题
某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分.两个队答题情况见书上第23页.
二、分析探索、问题解决
分组讨论扣的分怎样表示?
用前面学的数能表示吗?
数怎么不够用了?
引出课题.
讲授正数、负数、有理数的定义.
用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数.启发学生再从生活中例举出用负数表示具有相反意义的数。
三、巩固练习
1、用正数或负数表示下列各题中的数量:
(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;
(2)球赛时,如果胜2局记作+2,那么-2表示______;
(3)若-4万表示亏损4万元,那么盈余3万元记作______;
(4)+150米表示高出海平面150米,低于海平面200米应记作______.分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;
完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量.
2、下面说法中正确的`是().
a.“向东5米”与“向西10米”不是相反意义的量;
b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;
c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;
d.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米
三、小结回顾、纳入体系
学生交流回顾、讨论总结,教师补充如下:
概念:正数、负数、有理数.
分类:有理数的分类:两种分法.
应用:有理数可以用来表示具有相反意义的量.
有理数加法的教案 篇4
一、教学目标
1. 知识与技能:
理解有理数的加法法则,能够运用有理数加法法则进行整数加法运算。
掌握有理数加法中同号相加、异号相加以及一个数与零相加的情况。
2. 过程与方法:
通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
在探索过程中感受数形结合和分类讨论的数学思想。
3. 情感态度与价值观:
激发学生的学习兴趣、求知欲望,培养良好的数学思维品质。
体会数学知识于生活、服务于生活,培养对数学的.热爱和运用数学的意识。
二、教学重点与难点
重点:理解和运用有理数的加法法则。
难点:理解有理数加法法则,尤其是异号两数相加的法则。
三、教学过程
1. 引入:
通过实际生活中的例子(如某人从一点出发,经过两次不同方向的运动)引导学生思考有理数加法的情境。
2. 知识点讲解:
介绍有理数的概念,强调有理数包括正整数、正分数、零、负整数和负分数。
详细讲解有理数加法的法则,包括同号相加、异号相加和一个数与零相加的情况。
3. 例题讲解与练习:
通过具体例题(如足球比赛中的净胜球数)演示有理数加法的应用。
提供练习题供学生练习,加深对有理数加法法则的理解和掌握。
4. 小结:
总结本节课学习的内容和重点,强调有理数加法法则的重要性和应用。
有理数加法的教案 篇5
教学目标
1、理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;
2、通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。
3、通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。
教学建议
(一)重点、难点分析
本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值。理解有理数的.减法法则是难点,突破的关键是转化,变减为加。学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施。
(二)知识结构
(三)教法建议
1、教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。
2、不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。
3、因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆。
4、注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。
教学设计示例:
有理数的减法
一、素质教育目标
(一)知识教学点
1、掌握有理数的减法法则。
2、进行有理数的减法运算。
(二)能力训练点
1、通过把减法运算转化为加法运算,向学生渗透转化思想。
2、通过有理数减法法则的推导,发展学生的逻辑思维能力。
3、通过有理数的减法运算,培养学生的运算能力。
(三)德育渗透点
通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。
(四)美育渗透点
在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美。
二、学法引导
1、教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。
2、学生学法:探索新知→归纳结论→练习巩固。
三、重点、难点、疑点及解决办法
1、重点:有理数减法法则和运算。
2、难点:有理数减法法则的推导。
四、课时安排
1课时
五、教具学具准备
电脑、投影仪、自制胶片。
六、师生互动活动设计
教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。
七、教学步骤
(一)创设情境,引入新课
1、计算(口答)(1);(2)-3+(-7);
(3)-10+(+3);(4)+10+(-3)。
2、由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃。这一天的最高气温比最低气温高多少?
教师引导学生观察:
生:10℃比-5℃高15℃。
师:能不能列出算式计算呢?
生:10-(-5)。
师:如何计算呢?
教师总结:这就是我们今天要学的内容。(引入新课,板书课题)
【教法说明】
1、题目既复习巩固有理数加法法则,同时为进行有理数减法运算打基础。2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法。
(二)探索新知,讲授新课
师:大家知道10-3=7。谁能把10-3=7这个式子中的性质符号补出来呢?
生:(+10)-(+3)=+7。
师:计算:(+10)+(-3)得多少呢?
生:(+10)+(-3)=+7。
师:让学生观察两式结果,由此得到:
师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以。
师:是如何转化的呢?
生:减去一个正数(+3),等于加上它的相反数(-3)。
【教法说明】
教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算。
2、再看一题,计算(-10)-(-3)。
教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?
生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7。教师给另外一个问题:计算(-10)+(+3)。
生:(-10)+(+3)=-7。
教师引导、学生观察上述两题结果,由此得到:
教师进一步引导学生观察(2)式;你能得到什么结论呢?
生:减去一个负数(-3)等于加上它的相反数(+3)。
教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算。
有理数加法的教案 篇6
教学目标
1. 会把有理数的加减法混合运算统一为加法运算;
2. 会把省略加号和括号的有理数加减混合运算看成几个有理数的加法运算;
3.进一步感悟“转化”的思想.
教学重点
把有理数的加减法混合运算统一为加法运算.
教学难点
省略负数前面的加号的有理数加法,运用运算律交换加数位置时,符号不变.
教学过程
根据有理数的减法法则,有理数的加减速混合运算可以统一为加法运算.
1.完成下列计算:
(1) 3+7-12; (2)(-8)-(-10)+(-6)-(+4).
归纳: 根据有理数的减法法则,有理数的加减混合运算可以统一为 运算;
(2)式统一成加法是________________________________;
省略负数前面的加号和( )后的形式是______________________;
读作____________________ 或 _______________________.
展示交流
1.把下列运算统一成加法运算:
(1)(-12)+(-5)-(-8)-(+9)=_____________________________;
(2)(-9)-(+5)-(-15)-(+9)=_____________________________;
(3) 2+5-8=_________________________________;
(4) 14-(-12)+(-25)-17=_____________________________________.
2. 将下列有理数加法运算中,加号省略:
(1)12+(-8)=________________;
(2)(-12)+(-8)=_________________________________;
(3)(-9)+(-5)+(+15)+(-20)= ____________________________.
3.将下列运算先统一成加法,再省略加号:
(-15)-(+63)-(-35)-(+24)+(-12)=_________________________
=_________________________.
4. 仿照本P37例6,完成下列计算:
(1) -4-5+6 ; (2) -23+41-24+12-46.
5. 仿照本P38例7,巡道员沿东西方向的铁路巡视维护,从住地出发,他先向东巡视了6km,休息之后,继续向东维护了4km;然后折返向西巡视了12.5 km,此时他在住地的什么方向?与驻地的距离是多少?
盘点收获
个案补充
课堂反馈
1.计算:
2.早晨6:00的气温为 ℃,到中午2:00气温上升了8℃,到晚上10:00气温又下降了9℃.晚上10:00的气温是多少?
迁移创新
一架飞机做特技表演,它起飞后的高度变化情况为:上升4.5千米,下降3.2千米,上升1.1千米,下降1.4千米,求此时飞机比起飞点高了多少千米?
课堂作业
本P39 习题2 .5第6题(1)、 (3)、(5), 第7题 .
有理数加法的教案 篇7
教学目标:
1、使学生掌握有理数加法的运算律,并能运用加法运算律简化运算。
2、培养学生观察、比较、归纳及运算能力。
重点:有理数加法运算律及其运用。
重点:灵活运用运算律
教学过程:
一、创设情境,引入新课
1、小学时已学过的加法运算律有哪几条?
2、猜一猜:在有理数的加法中,这两条运算律仍然适用吗?
3、(1)计算30+(-20)=__________=______,-20+30=___________=_____;
(2)[8+(-5)]+(-4)=_______=______, 8+[(-5)+(-4)]=_______=______。
二、讲授新课
教师:你会用文字表述加法的两条运算律吗?你会用字母表示加法的这两条运算律吗?
(学生回答省略)
师生共同归纳:加法交换律:两个数相加,交换加数的位置,和不变。 即:a+b=b+a
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。即(a+b)+c=a+(b+c)
讲解例3
教师:例3中是怎样使计算简化的?这样做的根据是什么?(请两位同学起来回答)
三、巩固知识
教师:例4中用了两种方法,比较两种解法,哪种方法比较好?解法2中使用了哪些运算律?
师生共同得出:解法2比较好,因为它的运算量比较小。解法2中使用了加法交换律和加法结合律。
四、总结
本节课主要学习有理数加法运算律及其运用,主要用到的思想方法是类比思想,需要注意的是:有理数的加法运算律与小学学习的运算律相同,运用加法运算律的目的为了简化运算。解题技巧是将正数分别相加,再把负数分别相加,然后再把它们的和相加。
五、布置作业
有理数加法的教案 篇8
教学目标:
1、知识与技能:理解有理数加法的运算律,能熟练地运用运算律简化有理数加法的运算,能灵活运用有理数的加法解决简单实际问题。
2、过程与方法:经过有理数加法运算律的探索过程,了解加法的运算律,能用运算律简化运算。
重点、难点:
1、重点:运算律的'理解及合理、灵活的运用。
2、难点:合理运用运算律。
教学过程:
一、创设情景,导入新课
1、叙述有理数的加法法则。
2、有理数加法与小学里学过的数的加法有什么区别和联系?
答:进行有理数加法运算,先要根据具体情况正确地选用法则,确定和的符号,这与小学里学过的数的加法是不同的;而计算和的绝对值,用的是小学里学过的加法或减法运算。
二、合作交流,解读探究
1、计算下列各题,并说明是根据哪一条运算法则?
(1)(—9.18)+6.18;
(2)6.18+(—9.18);
(3)(—2.37)+(—4.63)
2、计算下列各题:
(1)+(—4);
(2)8+;
(3)+(—11);
(4)(—7)+;
(5)+(+27);
(6)(—22)+。
通过上面练习,引导学生得出:
交换律两个有理数相加,交换加数的位置,和不变。
用代数式表示上面一段话:
a+b=b+a
运算律式子中的字母a,b表示任意的一个有理数,可以是正数,也可以是负数或者零。在同一个式子中,同一个字母表示同一个数。
结合律三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
用代数式表示上面一段话:
(a+b)+c=a+(b+c)
这里a,b,c表示任意三个有理数。
根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加。
三、应用迁移,巩固提高
例(P22例3)计算:
(1)33+(—2)+7+(—8)
(2)4.375+(—82)+(—4.375)
引导学生发现,在本例中,把正数与负数分别结合在一起再相加,有相反数的先把相反数相加;能凑整的先凑整;有分母相同的,先把同分母的数相加,计算就比较简便。
本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学生发现,简化加法运算一般是三种方法:首先消去互为相反数的两数(其和为0),同号结合或凑整数。
例2(P23例4)
教师通过启发,由学生列出算式,再让学生思考,如何应用运算律,使计算简便。第一问可以让学生自已作行程示意图帮助理解,注意第一问和第二问的区别。
练习课本P23练习:1、2
四、总结反思
本节课你有哪些收获?
五、作业
1、课本P27习题1.4A组第3、4题
2、课本P28习题1.4B组第12题
有理数加法的教案 篇9
一、 教学目标
1、 知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、 能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、 情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
二、 教学重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
三、 教学过程
1、 创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
学生:26米。
教师:能写出算式吗?学生:……
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题
2、 小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
① 2 ×3
2看作向东运动2米,×3看作向原方向运动3次。
结果:向 运动 米
2 ×3=
② -2 ×3
-2看作向西运动2米,×3看作向原方向运动3次。
结果:向 运动 米
-2 ×3=
③ 2 ×(-3)
2看作向东运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
2 ×(-3)=
④ (-2) ×(-3)
-2看作向西运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
(-2) ×(-3)=
(2)学生归纳法则
①符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)=( ) 同号得
(-)×(+)=( ) 异号得
(+)×(-)=( ) 异号得
(-)×(-)=( ) 同号得
②积的绝对值等于 。
③任何数与零相乘,积仍为 。
(3)师生共同用文字叙述有理数乘法法则。
3、 运用法则计算,巩固法则。
(1)教师按课本P75 例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例子中两因数的`关系,得出两个有理数互为倒数,它们的积为 。
(3)学生做练习,教师评析。
(4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。
有理数加法的教案 篇10
一.教学目标
1.知识与技能
(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;
(2)在有理数加法法则的教学过程中,注意培养学生的运算能力.
2.过程与方法
通过观察,比较,归纳等得出有理数加法法则。能运用有理数加法法则解决实际问题。
3.情感态度与价值观
认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
二、教学重难点及关键:
重点:会用有理数加法法则进行运算.
难点:异号两数相加的法则.
关键:通过实例引入,循序渐进,加强法则的应用.
三、教学方法
发现法、归纳法、与师生轰动紧密结合.
四、教材分析
“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。
五、教学过程
(一)问题与情境
我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为4+(-2),黄队的净胜球为1+(-1),这里用到正数与负数的加法。
(二)师生共同探究有理数加法法则
前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:
足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,打平为“0”.比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:
(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球.也就是
(+3)+(+1)=+4.
(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是
(-2)+(-1)=-3.
现在,请同学们说出其他可能的情形.
答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是
(+3)+(-2)=+1;
上半场输了3球,下半场赢了2球,全场输了1球,也就是
(-3)+(+2)=-1;
上半场赢了3球下半场不输不赢,全场仍赢3球,也就是
(+3)+0=+3;
上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是
(-2)+0=-2;
上半场打平,下半场也打平,全场仍是平局,也就是
0+0=0.
上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?
这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数.
(三)应用举例 变式练习&&
例1 口答下列算式的结果
(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);
(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);(8)0+0.
学生逐题口答后,师生共同得出:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.
例2(教科书的例1)
解:(1)(-3)+(-9) (两个加数同号,用加法法则的第1条计算)
=-(3+9) (和取负号,把绝对值相加)
=-12.
(2)(-4.7)+3.9 (两个加数异号,用加法法则的第2条计算)
=-(4.7-3.9) (和取负号,把大的绝对值减去小的绝对值)
=-0.8
例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数
下面请同学们计算下列各题以及教科书第23页练习第1与第2题
(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);
学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。
(四)小结
1.本节课你学到了什么?
2.本节课你有什么感受?(由学生自己小结)
(五)作业设计
1.计算:
(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);(4)(+6)+(+9);
(5)67+(-73);(6)(-84)+(-59);(7)-33+48;(8)(-56)+37.
2.计算:
(1)(-0.9)+(-2.7); (2)3.8+(-8.4);(3)(-0.5)+3;(4)3.29+1.78;
(5)7+(-3.04);(6)(-2.9)+(-0.31)(7)(-9.18)+6.18; (8)(-0.78)+0.
3.用“>”或“<”号填空:
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0,|a|>|b|,那么a+b ______0
(六)板书设计
1.3.1有理数加法
一、加法法则二、例1例2例3
有理数加法的教案 篇11
一、教学目标
1. 理解有理数加法的概念,掌握有理数加法的运算法则。
2. 能运用有理数加法的运算法则进行简单的有理数加法运算。
3. 培养学生的逻辑思维能力和数学运算能力。
二、教学重难点
1. 重点:掌握有理数加法的运算法则。
2. 难点:理解异号有理数相加时绝对值不等和相等两种情况下的运算。
三、教学过程
1. 导入新课
复习有理数的概念,回顾整数、分数和它们的运算规则。
提问学生:你们认为有理数加法与整数加法有什么不同?
2. 讲授新课
定义有理数加法:将两个有理数相加得到另一个有理数的`过程称为有理数的加法。
同号有理数相加:当两个有理数同号时,取相同的符号,并将它们的绝对值相加。
异号有理数相加:当两个有理数异号时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
0与任何数相加:0与任何数相加都等于该数本身。
3. 举例说明
给出几个具体的例子,让学生根据运算法则进行计算。
引导学生总结规律,加深对有理数加法运算法则的理解。
4. 课堂练习
布置一些练习题,让学生独立完成。
巡视课堂,及时纠正学生的错误,并解答学生的疑问。
5. 课堂小结
总结有理数加法的运算法则,强调同号相加和异号相加的运算方法。
提醒学生注意运算过程中的符号和绝对值问题。
6. 作业布置
布置适量的课后练习题,巩固学生对有理数加法运算法则的掌握。
四、教学反思
反思本节课的教学效果,评估学生对有理数加法运算法则的掌握情况。
总结教学中的优点和不足,为下一节课的教学提供参考。
有理数加法的教案 篇12
一、学情及学习内容分析
“有理数的加法与减法”是基于规则为主的新授课型。
有理数的加法与减法是在引入“负数”的基础上,将数的范围扩展到“有理数”范围内的加、减法运算。本节课从学生的生活经历和经验出发,创设情境,通过分析生活情境中的事理和观察温度计刻度的操作,得到了一些有理数减法的算式,用“化归”的思想方法归纳出有理数减法法则,并应用所学的有理数减法解决实际问题,整节课的设计流程和总体思路可以用下图表示:生活情境,动手操作——有理数减法算式———有理数减法法则———有理数减法的应用。
二、教学目标及教学重(难)点
教学目标:
1、知识与技能:会根据减法的法则进行有理数减法的运算。
2、过程与方法:经历分析生活情境中的数学事例,提炼其中的数学算式,并从中归纳有理数减法法则;经历将法则应用于解题的这一由一般到特殊的过程。
3、情感态度与价值观:在由实际情境提炼数学算式的过程中,感受数学在我们的生活中;在这一过程中,渗透转化的思想方法,感受数学思想方法的导航作用。
教学重点:有理数减法法则与运用
教学难点:从实际情境到数学算式,从数学算式到法则的提炼,在法则的总结中体现化的思想方法的渗透。
教学方法:观察探究、合作交流。
三、教学过程设计:
在课前让学生玩有理数加法中的扑克牌游戏。
1、情境引入:
师:同学们,大家都看过天气预报,有没有注意到里面有“温差”之说呢?
有效性分析:通过设计“温差”这一问题情境,进而顺利的进入课题,并从列算式角度加以认识,得到一些有理数减法算式,为后面的化归思想方法归纳出有理数减法法则做好素材和算式上的准备。
2、建构活动
活动1:计算温差
师:有理数加减
生1:利用温度计的刻度直观得到算式5 + 3 = 8
生2:利用日温差的定义可得到算式:5-(-3)= 8
师:比较两式,我们有什么发现吗?
生:“-”变“+”,(-3)变3。
活动2:通过举例子验证刚才的变化过程,加深对有理数减法算式的理解。
有效性分析:从生活情境中,学生获取了丰富的素材和有理数减法运算的算式,为下面观察算式特点,总结运算方法做好准备。这种由算式到法则的过程,使学生从心理上更易接受,令算式更有实际背景和说服力,为有理数减法运算法则的提炼和数学化打下了良好的基础。
3、数学化认识
5-(-3)=5 + 3(-3)-(-5)=(-3)+ 5
3-(-5)=3 +5(-3)-5=(-3)+(-5)
师:综合上面算式的共同特点即被减数不变,减号变加号,减数变成它的相反数,我们就得到了有理数减法法则:减去一个数,等于加上这个数的相反数。
有效性分析:“化归”的思想和方法是初中数学中最重要的方法之一,本节课的数学化过程正是通过观察已有的算式来发现和总结“有理数的减法法则”的,在教学中渗透了“化归”思想。此外,在化归为加法运算时,进一步复习加法法则,强化了有理数的减法与小学学的减法之间的联系和区别:即小学的减法是有理数减法中的一种特例,即减数比被减数小,;当减数比被减数大时,小学无法解决的问题现在可以解决了。
4、基础性训练
例1计算下列各题
①0-(-22)
②8.5-(-1.5)
③(+4)-16
④(?1
2)?1
4
⑤15-(-7)
⑥(+2)-(+8)
基础练:
1、课本p 322、3、4
2、求出数轴上两点之间的距离:
(1)表示数10的点与表示数4的点;
(2)表示数2的点与表示数-4的点;
(3)表示数-1的点与表示数-6的`点。
有效性分析:基础性训练中安排了典型例题,着重训练学生利用刚学过的“有理数的减法法则”进行计算的正确性和熟练度,并规范了计算题目的格式,在格式中进一步熟悉法则,正确运用法则,让学生明确有理数的减法的一般步骤是(1)变符号;(2)用加法法则进行计算
3、拓展延伸
巧用扑克牌进行有理数简单运算练习
有效性分析:通过扑克牌的两个活动,进一步调动学生学习有理数减法运算法则的积极性和主动性,寓教于乐,在活动中通过小组带动班上所有学生学习的热情,同时在活动中更加明确运算法则,做到熟练而准确地运用法则,感受并思考:“两个有理数相减,差一定比两个减数小吗?”的问题,以区别于学生在小学中熟知的减法运算,更好的完成本节课的教学目标。
四、教学反思
“有理数的加法与减法”的教学,可以有多种不同的设计方案,但大体上可以分为两类:一类是由老师较快的给出法则,用较多的时间组织学生练习,以求熟练的掌握法则;另一类是适当的加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应的适当压缩法则的练,如本教学设计。本节课注重学生自我学习的能力,学生在学习了有理数加法后,再学习有理数的减法,教师把学习的主动权归还学生,不再是教师讲,学生听,现在变为学生讲,教师听,由学生自己发现问题,分析问题,解决问题。学生与教师分享彼此的思考,经验和知识,交流彼此的情感,体验与感悟,丰富教学内容,求的新的发展,从而达到共识,共享,共进。
有理数加法的教案 篇13
【教学目标】
1. 通过学习,能感受到数学知识来源于生活又可应用于实际生活,激发学习的兴趣。
2.通过探索,能归纳总结出有理数加法法则,理解有理数加法的意义渗透分类思想。
3.掌握有理数加法法则,并能准确地进行有理数加法运算。
【学习重点、难点】
重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算;
难点:异号两数如何相加的法则。
【学习过程】
一、 预习自学:
1.蛋糕店上半年挣5万,下半年挣3万,请问一年共挣多少钱?
2.蛋糕店上半年赔5万,下半年赔3万,请问一年共挣多少钱?
3.蛋糕店上半年挣5万,下半年赔3万,请问一年共挣多少钱?
4.蛋糕店上半年赔5万,下半年挣3万,请问一年共挣多少钱?
5.蛋糕店上半年挣5万,下半年赔5万,请问一年共挣多少钱?
6.蛋糕店上半年赔5万,下半年挣0万,请问一年共挣多少钱?
请你列式计算,并引导学生对前面的七个加法运算进行合理的分类探讨:和的符号怎样确定?和的绝对值怎样确定?(小组讨论展示)
二、 教师点拨
知识点一:引导学生对前面的七个加法运算进行合理的分类
同号两数相加: (+5)+(+3)= ______.(-5)+(-3)= ______
异号两数相加:(+5)+(-3)= ______;(-5)+(+3)= ______;
(+5)+(-5)=______
一数与零相加: (-5)+0=______;
知识点二:探讨:和的符号怎样确定?和的绝对值怎样确定?
结论:有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
三.例题精讲;例1(学生自学,教师示范。注意解题步骤)
四、课堂练习;36页随堂练习与习题(小组展示交流)
五、当堂检测;
1.用生活中的事例说明下列算是的意义,并计算出结果:
(-2)+(-3);(-3)+2
2.有理数加法法则:
绝对值不相等的两数相加,取绝对值的加数的符号,并用较大的绝对值较小的绝对值. 互为相反数的两个数相加得.
3.计算:(+15)+(-7);(-39)+(-21);
(-37)+22;(-3)+(+3)
有理数加法的教案 篇14
一、说教材:
(一)地位和作用
有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要,最基础的内容之一。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。就本章而言,有理数的加法是本章的重点之一。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
(二)课程目标:
1、知识与技能目标:
⑴了解有理数加法的意义。
⑵经历探索有理数加法法则的过程,理解并掌握有理数加法的法则。
(3)运用有理数加法法则正确进行运算(主要是整数的运算)。
2、过程与方法目标:
⑴在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
(2)在探索过程中感受数形结合和分类讨论的数学思想。
(3)渗透由特殊到一般的唯物辩证法思想
3、情感态度与价值观目标:
(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。
(2)让学生体会到数学知识来源于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。
(3)培养学生合作意识,体验成功,树立学习自信心。
(三)教学重点、难点:
重点:理解和运用有理数的加法法则难点:理解有理数加法法则,尤其是理解异号两数相加的法则
二、说教法:
在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价与小组评价相结合);行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。信:在本节课的探究法则与运用法则中体验成功,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)= +5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。又如以口答形式判断几组有理数加法的和的符号和在最后以“挑战老师”的形式判断一句话的正误)。同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示范,其它的留给学生独立得出或合作完成。另外利用多媒体来辅助教学,使教学内容直观形象化,使学生在比较真实的环境里面体验数学的生活性。
三、说学法:
本节课同号两数相加学生易理解,难点是异号两数相加,所以在教学时要注意以下几点:第一、学生在小学阶段的学习和前面正数、负数、数轴、绝对值的'学习为本节课提供了学习的前提;第二、七年级的学生已经初步具备合作和交流的能力,通过探究和合作获得成功基本上可以实现课程目标的;
第三、范例讲解和随堂练习始终是学以致用的有效方法。范例讲解与随堂练习都是学生强化理解法则、正确运用法则的地方。范例讲解时应引导学生步步说理,随堂练习时应引导学生通过自我反省、小组评价、来克服解题时的错误,有必要教师给与规范矫正。
四、说教学程序:
本节课我将“新、行、省、信”四字教育法运用到教学中,教学过程划分为以下几个环节:(简述如下)
1、引入新知---新(创设新的问题情境)。
今年恰好举行了世界杯,所以通过足球净胜球问题引入教学,情境活泼、自然。在学生回答(-1)+(+1)=0和(+1)+(-1)=0时渗透“正负抵消”的思想引入讨论整数加法的几种情形。
2、探究新知---行
(1)类比小学学习加法的“实物数数法”(1用一个表示,-1用一个表示,那么2就用两个表示的方法)和“正负抵消”法形象直观得出一组有理数加法的结果,教学时除(+2)+(+3)教师示范得出外,其他几例均可学生自主得出,教师在聆听学生讲述自己的方法时及时给与积极的评价。
(2)联系前面数轴,运用数轴也可以形象得出上述四组数的结果。在教学时要强调加法的“叠加性”,此处学生易出错。如在讲(-2)+(-3)时学生虽然明白-2表示从原点出发往西移动2个单位,但在加上-3时易犯“又从原点出发”的错误,教学时可以采取以下策略:一是先讲点的移动再移动然后用数学式子表示,在此基础上出示其它几个算式,让学生运用点的移动说明运算结果;二是联系孩提时学数数(数手指)的方法进行类比。在此处的教学师应加强引导,在讲完第一个式子的表示过程后其他三个让学生依照刚才教师的方法和思路独立完成,在学生发表见解时师可以让其他学生给出矫正和评价。
3、得出新知---省
在前面形象得出结果的基础上教师诱导学生从四个例子中发现一般的结论。教师引导学生观察:问:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?一个有理数同0相加,和是多少?在引导学生观察前可以让学生小组合作、交流、讨论。教师可以参与到学生当中的讨论中,在讨论中师可诱导学生先看式子的和的符号与两个加数的符号的关系,再诱导学生看和的绝对值与两个加数的绝对值的关系。如果学生有困难,师可引导学生分类:同号类、异号类、相反数类,观察符号与绝对值特征,再请学生发表自己或小组成员的见解。此处应肯定学生朴素的语言特别应表彰有独特见解和说得完备的学生。最后师生一起用比较规范的语言总结有理数加法法则。
4、运用新知---信
此处的“信”主要是指在运用法则解决问题时对照法则“步步说理”,从而树立学生学好法则用好法则的信心。特别是异号两数相加时更要着重强调、矫正、理清思路和步骤。然后师生一起“解后思”:在做题时应该注意什么(此处又是“省”),在随堂练习时教师关键是反馈矫正、积极评价,5、联系实际、小小拓展;
为落实“数学来源于生活、生活处处有数学”的理念,此处可安排两道实际应用题:如:请根据式子(-4)+3举出一个恰当的生活情境;(此例有很多好情境,教师应对举例举得好的学生给与积极评价)。又如:土星表面的夜间平均温度为-150度,白天比夜间高27度,那么白天的平均温度是多少?
6、教学小结、知识回顾:教师让学生畅所欲言的谈在这节课的得与失、感到困惑和疑难的地方、运用法则的关键和步骤等等。师在学生发言的基础上再提炼。运算时的基本思路:①确定类型、②确定符号、③确定绝对值。
7、课外作业
为进一步巩固知识,布置适当作业。教师还可提问供学生课外思考以挑战老师:学习完今天的知识后,老师认为“两个有理数相加,和一定大于其中一个加数”,老师的说法正确吗?请
聪明的你举例说明。
同行点评
潘老师对本节课的设计是比较好的,体现学生是学习的主人,教师是教学活动的组织者,引导者和叁与者。的确,新课程的实施给教师提出了全新的挑战。在新课程中,教学观念的转变和课程意识的建立是首要的,教学不是教“教科书”,而是经由“教科书”来教,新课程给教师留下了广阔的空间,教师在教学中要站在课程标准的角度挖掘教材,把教材内容与学生感兴趣的事物结合起来,寓教于乐,充分调动学生的学习积极性。
教学反思
“有理数的加法”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.现在,试比较这两类教学设计的得失利弊.
第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好.
第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.
这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会.权衡利弊,我们主张采用第二种教学方法。
有理数加法的教案 篇15
【教学目标】
知识技能
1.通过与温度计的类比,了解数轴的概念,会画数轴。
2.知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。
过程方法
1.从直观认识到理性认识,从而建立数轴概念。
2.通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。
3.会利用数轴解决有关问题。
情感态度
通过对数轴的学习,体会到数形结合的思想方法,进而初步认识事物之间的联系性。
【教学重点】
1.数轴的概念。
2.能将已知数在数轴上表示出来,说出数轴上已知点所表示的数。
【教学难点】
从直观认识到理性认识,从而建立数轴的概念。
【情景引入】
1.小明感冒了,医生用体温计测量了他的体温,并说:“37.8度。”
提疑:医生为什么通过体温计就可以读出任意一个人的体温?
(体温计上的刻度)
2.我们再一起去看看12月时祖国各地的自然风光和温度情况(电脑分别显示黑龙江、焦作、海南三个城市美丽的自然风光,温度分别为-1 0°c,0°c,20°c)
提疑:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?
(正数、零、负数)
3.请尝试画出你想像中的温度计,并和其他同学交流,注意交流时要发表自己的见解。然后提问:请找出一支温度计从外观上具有哪些不可缺少的特征?(组织学生讨论交流)学生可能会从不同的角度回答,教师给予必要的`引导,总结出与数轴相对应的特点,如形状是直的、0刻度、单位刻度。(电脑动态演示,将温度计水平放置,抽象得出数轴图形表示有理数-10,0,20的过程)从而引出课题------数轴。
《有理数的加减混合运算的技巧及应用》同步练习(含答案)
1、小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的路程记录依次为(单位:cm):+5,-3,+10,-8,-7,-10,+12,-2,+1.
(1)小虫最后是否能回到出发点O?如果不能,它与出发点的位置是怎样的?
(2)小虫在爬行过程中离出发点最远时在什么位置?(要说明方向和距离)
(3)在爬行过程中,如果每爬1 cm奖励两粒芝麻,则小虫一共得到了多少粒芝麻?
《相反数、绝对值的几何意义》同步练习(含答案)
2、文具店、小明家和书店依次坐落在一条东西走向的大街上,已知文具店位于小明家西边200 m处,书店位于小明家东边100 m处.某天小明从家里出发先去书店购书,然后再去文具店选购学习用品,最后回家学习.
(1)以小明家为原点,向东为正方向,取适当的长度为单位长度画一条数轴,在数轴上表示文具店和书店的位置;
(2)用求绝对值的方法计算小明这一天所走的路程.
- 欲了解有理数加法的教案网的更多内容,可以访问:有理数加法的教案